A generalization of Dirac's theorem on cycles through k vertices in k-connected graphs
نویسندگان
چکیده
Let X be a subset of the vertex set of a graph G. We denote by (X) the smallest number of vertices separating two vertices of X if X does not induce a complete subgraph of G, otherwise we put (X) = |X| − 1 if |X| 2 and (X) = 1 if |X| = 1. We prove that if (X) 2 then every set of at most (X) vertices of X is contained in a cycle of G. Thus, we generalize a similar result of Dirac. Applying this theorem we improve our previous result involving an Ore-type condition and give another proof of a slightly improved version of a theorem of Broersma et al. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
A Generalization of Dirac's Theorem for K(1,3)-free Graphs
It is known that ff a 2-connected graph G of suiBciently large order n satisfies the property that the union of the neighborhoods of each pair of vertices has cardinallty at least ~-, " then G is hamiltonian. In this paper, we obtain a similar generalization of Dirac's Theorem for K(1, 3)-free graphs. In particular, we show that if G is a 2-connected K(1, 3)-free graph of order n with the cardi...
متن کاملNordhaus-Gaddum type results for the Harary index of graphs
The emph{Harary index} $H(G)$ of a connected graph $G$ is defined as $H(G)=sum_{u,vin V(G)}frac{1}{d_G(u,v)}$ where $d_G(u,v)$ is the distance between vertices $u$ and $v$ of $G$. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ ...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملIntersections of Longest Cycles in k-Connected Graphs
Let G be a connected graph, where k2. S. Smith conjectured that every two longest cycles of G have at least k vertices in common. In this note, we show that every two longest cycles meet in at least ck 3Â5 vertices, where cr0.2615. 1998 Academic Press In this note, we provide a lower bound on the number of vertices in the intersection of any two longest cycles in a k-connected graph (k2). This ...
متن کاملThe Steiner diameter of a graph
The Steiner distance of a graph, introduced by Chartrand, Oellermann, Tian and Zou in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ and $Ssubseteq V(G)$, the Steiner distance $d(S)$ among the vertices of $S$ is the minimum size among all connected subgraphs whose vertex sets contain $S$. Let $...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 307 شماره
صفحات -
تاریخ انتشار 2007